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A Study on the Plane Couette Flow Using Micropolar 
Fluid Theory 

Y o u n - J e a  Kim*, T a e - A n  Kim 
School o f  Mechanical Engineering, SungKyunKwan University, 

300 CheonCheon-dong, Suwon 440-746, Korea 

An analysis of  the plane Couette  flow between two paral lel  plates of  a viscous, incom- 

pressible, micropola r  fluid is presented. Especially, the effects of  non-ze ro  values of  the mic ro -  

gyrat ion boundary  condi t ion  coefficient and pressure gradient on the flow fields are studied. 

Numer ica l  results show that the micropola r  parameter  was found to have much more of  an 

impact  on the flow behaviors.  It is also observed that the micro-gyra t ion  boundary  condi t ion 

coefficient influenced on the coefficients of  skin friction and couple stress due to its different 

effect on the surface stress. 
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N o m e n c l a t u r e  
Cs Skin friction coefficient 

Cw Couple  stress coefficient 

h Height  of  microchannel  

Mw Couple  stress 

m Model  parameter  

n Mic ro -gyra t ion  boundary  condi t ion  coeffi- 

cient (0--<n--< 1) 

Uo Scale of  the referenced velocity 

u, v ; Longi tudinal  and transverse components  

of  velocity vector, respectively 

x, y : Distances a long and perpendicular  to the 

plate, respectively 

Greek symbols 
/7 : Dimensionless  viscosity ratio 

7 : Spin gradient  viscosity 

p : F lu id  density 

: Mean free path 

A : Coefficient of  gyro-viscosi ty  

z-w ; Shear stress 
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/~ : Fluid dynamic viscosity 

a~ : Angular  velocity vector 

Superscript 
* : Dimensional  properties 

I.  I n t r o d u c t i o n  

In order to design and fabricate microfluidic 

devices effectively, fluid flow behavior  on the 

microscale must be clearly understood.  In the last 

decades a number  of  studies have appeared in the 

li terature on the flow of a viscous, incompressible 

fluid between two parallel  plates. An exact solu- 

tion of  the Navie r -S tokes  equat ions for the plane 

Couette  f low between two parallel  plates is well 

known (Schlichting, 1979). 

Experiments  show that when the dimensions of  

the channels are in the ,urn-range, the measured 

data are different from those predicted by Nav ie r -  

Stokes equat ions (Jiang et al., 1995, Yager and 

Brody, 1996). Discrepancies concern flow charac- 

teristics, such as, volumetr ic  flowrate, average 

velocity, pressure drop and Darcy friction factor 

for incompressible fluids, f lowing through micro- 

channel.  In addit ion,  experimental  observat ions 

show that the fluid viscosity close to the channel  

wall is higher (50-800//00) than the bulk viscosity o f  
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the fluid (Forcada and Mate, 1993). 

In the theory of micropolar fluids, originated 

by Eringen (1964), both the effect of couple 

stresses and the microscopic effects arising from 

local structure and micro-rotat ion of the fluid 

element are simultaneously taken into account. 

Previous research has indicated that the micro- 

polar fluid model may provide a better agreement 

with the experimental data for microfluidic dev- 

ices than the Navier-Stokes theory (Papautsky, 

1999). In addition, the experiments and theo- 

retical estimations indicate, that for real fluid 

flows the micropolar effects are important if the 

height of the channel is comparable to the di- 

mensions of the particles of the fluid. On the 

other hand, when the dimensions of the container 

approach the dimensions characteristic for the 

molecular structure of the medium inside (i.e., 

mean free path), the assumption of continuum 

seems not to be justified. 

In the present work we extend the use of micro- 

polar  fluid theory to examine fluid behaviors in a 

plane Couette flow. Especially, we consider the 

effect of non zero values of the micro gyration 

boundary condition coefficient on the variation of 

skin friction and couple stress at the plates with 

respect to given flow conditions. 

2. F o r m u l a t i o n  o f  t h e  P r o b l e m  

In a micropolar  fluid, the local fluid elements 

are allowed to undergo only rigid rotations with- 

out stretch. A coordinate system is introduced 

with its origin on the lower stationary plate lying 

horizontally on the x*z*-plane.  The governing 

equations for micro-continuum fluid flow can 

be simplified by considering isothermal, incom- 

pressible microfluids, with no body forces, and 

steady-state flow (Ariman et al., 1973): 

a u * ,  av* o (l) 
Ox* t~ 3y* 

au* , aU* 
u*~x* +v Oy* 

(2) 
_ Iap* 1 , + /32u *+8~u *\ A 8w* 

0 ax* +7 A)/a.W" pay* 
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U* +v* Or* 
ay* 

(31 
_ l 8p* ~ lp (82v*+8~v *)  A 8o~* 

~y, (/~+A)\ ax,2 $y,2/ 0 &* 

&o* , , &0* 
u* •x* t v  3y* 

_ 2A , -  7 /32c0 *-32~0 * ~ -  A /0v* &,  (4) 

0J* oy*) 
where x* and y* are the dimensional distances 

longitudinal and perpendicular to the plate, res- 

pectively, u* and v* are the components of  di- 

mensional velocities along x* and y* directions, 

respectively, p is the density, # is the translational 

viscosity, A is the coefficient of gyro-viscosity 

(or vortex viscosity), j* is the micro-inert ia  den- 

sity, co* is the component of the angular velocity 

vector normal to the x*y*-plane,  and 7 is the 

spin-gradient  viscosity which gives some rela- 

tionship between the coefficients of viscosity and 

micro-inert ia  (Ahmadi,  1976; Kim, 1999) : 

where/3 denotes the dimensionless viscosity ratio, 

defined as follows: 

/ ~ = A  (6) # 

We consider a plane Couette flow of a viscous, 

incompressible, micropolar fluid between two 

parallel plates of distance h apart. The upper 

plate is given in uniform motion u~ along the 

x*-axis.  We also assume that a pressure gra- 

dient becomes constant along the streamwise di- 

rection. 

Under these assumptions, the appropriate boun- 

dary conditions for the velocity and micro-rota-  
tion fields are 

o~u* 
u * = 0 ,  c o * = - - n  oqy ~ at y * = 0  (7) 

c~u* 
u * = u ~ ,  co*=-- n @ ~  at y * = h  (8) 

Here the boundary condition for micro-rotat ion 
variable co* describes its relationship with the 

surface stress. In this equation, the boundary 
condition coefficient (n) is a number between 0 
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and 1 that relates the micro-gyration vector to 

the shear stress. The value n = 0  corresponds to 
the case where the particle density is sufficiently 

large so that microelements close to the wall are 

unable to rotate. The value n=0 .5  is indicative of 

weak concentrations, and when n = l  flows are 

believed to represent turbulent boundary layers 

(Rees and Bassom, 1996). 

Ahmadi  (1976) demonstrated that the micro-  

rotation density is directly proport ional  to the 

square of the length scale of a sensitive volume 

element. This length scale is defined as the smal- 

lest volume for which average quantity, such as 

velocity, density, gyration, has statistical meaning. 

In addition, we introduce the relation of mean 

free path (~e) to the microstructure characteristic 

length (1) with the help of model parameter m as 

follows : 

l 
m = ~ -  (9) 

Since the microstructure length is less than the 

flow characteristic length (in this study the height 

of the microchannel, h), we may have the follow- 

ing relation, using Knudsen number (Kn=$/h): 

tfn<- ~ ( m) 

We now introduce the following dimensionless 

variables : 

X* * hi* V* 
X = h '  Y=Yh" u= Uo" v= Uo" 

�9 j ,  m2 p , _ p  ( l l )  
, ~ _ u ;  h oo*, 
~'~- Uo' co= Uo :=h 2 1o' p= oU~o 

in which Uo is a scale of the referenced velocity. 

After applying the locally fully developed flow 

assumption, the terms O/Ox will be vanished. 

However, we consider the case of a constant 

pressure gradient in the direction of fluid flow. 

The partial  differential operator a/3y is identical 

to the ordinary differential operator d/dy.  Then, 

the above governing equations reduce to the fol- 
lowing dimensionless form: 

db l+fl 32u &o 
{ d-l~ e 0 (12) dx Re oqy 2 c~y 

2 0 f  c o + ( l + _ f f )  ~162 10ft o~U 0 (13) 
rn 2 o~y 2 m 2 oqy 
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where Re=pUoh/lz is the Reynolds number. 

In addition, the boundary conditions (7) and 

(8) may be written as the following dimensionless 
form : 

0bt 
u = 0 ,  w=--n~_ ,  at y = 0  (14) ay 

u = g p ,  o 0 = - n  o~y at y = l  (15) 

The solutions of Eqs. (12)-(13) with satisfying 

boundary conditions (14) and (15) are given by 

r ~ l+(l--n)f l  ] 
(l--2n) (1+/3) 

+G[e_~ '+( ' -n )~  I Re dp 
(1--2~) (l-[-fl) 2+fl & y 

(16) 

Cl 2 [ l + ( l - n ) f l ]  y} 
u = ~  {~(,-e")-~ (,-2s) 

Ca {~( i_e_ay)  2 [ l + ( 1 - n ) f l l  y} (17) 
l+ f l  { (l--2n) 

Re dp y2 
-J 2+fl  dx 

Here the coefficients Ca and C2 are defined as 
follows : 

l+fl R dP'bl 1 

1+5 no dp.b~] 
C2=klI(l+fl) U;(ea-l)• "K~ dx j (19) 

where 

,~ 1 ( .  20f (20) 
l + f  

k l=2A[l+(1-n) f~  (ea_ e-a) 
(1 - -2n)  f 

- - 2 ( e a + e  -a) + 4  

(21) 

b l = ( e - a - 1 )  Iq l + f l - n f l  + ( l - 2 n )  (22) 

1 - -2n  
b 2 = ( e a - l )  1 + / ~ -  n/5' 

\ 2~ l ) (23) , / 

The wall shear stress can be written as 

rg = [(Iz+A) au* , 3y* +_/leo ]y*=0.h 

_/~U0 [ l + ( l _ n ) f ]  au 
h " ~ -  ~=0,1 

(24) 
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Then,  the coefficients of shear stress at the lower 

and upper plates are given by 

2r* 2�9 I ,^ 0u 
y=0,1 

. ,- ,- L , ~  -./C~+G, 
Re (1-2n (1+/~) ' ' 

2[l+(l-n)~] [ (I-2n)(l+f l) ' / 

/ 
1+~' 2+/J ax] 

(lower plate) 

(upperpIate) 

(25) 

The couple stress at the plates may be written 

a s  

ao)* 
M w = z  a ~ ,  y, o, h (26) 

Then,  the coefficient of couple stress at the plates 

can be calculated as 

C M w h  2 &o 
w= ~ 0  --gy y=O, 1 

Re dp (lower plate) 
~ ( G - G )  2+/3 dx 

Re dp (upper plate) A(Clea-Cze-~) 2+fl  dx 

(27) 

3 .  R e s u l t s  a n d  D i s c u s s i o n  

The effects of non-zero  values of micro-gyra-  

t ion boundary  condi t ion  coefficient and pressure 

gradient on the flow field and skin friction have 

been formulated in the preceding sections. This 

enables us to carry out the numerical  computa-  

tions for the velocities with various values of  the 

flow condi t ions  and fluid properties, m, rt,/~, UP, 

R e ,  and dp/dx ,  which are listed in the figure 

captions. 

The effects of various values of the micropolar  

parameter fl on the streamwise and micro-ro ta-  

t ional  velocities are shown in graphically in Fig. 

1. It is seen that the t ranslat ional  velocity profiles 

are flatten as the f l -parameter  increases. The 

reason is that as a port ion of the vorticity is used 

in producing micro-rota t ion,  the presence of the 

micropolar  elements has contr ibuted to the retar- 

dat ion of the flow. As shown in Fig. l ( b ) ,  fur- 

thermore, the magni tude of peak values of the 

micro- ro ta t iona l  velocity is located near the up- 

per plate. However, its maximum value increases 

init ially and then decreases as the f l -parameter  

increases. From these results we may deduce that 

the critical value of the viscosity ratio exists on 

the micro- ro ta t iona l  velocity. 

Slight variat ion of the t ransla t ional  velocity 

and micro- ro ta t iona l  velocity profiles across the 

channel  with different boundary  condi t ion  co- 

efficient (n) is observed in Fig. 2. The trans- 

lat ional  velocity profile shows an increasing na- 

ture as the n -paramete r  increases. However, the 

micro- ro ta t iona l  velocity profiles do not show 

consistent variations.  In order to elucidate the 

0.8 

g 

~= 0.4 

0.2 

0.0 
0 1 2 3 4 

translational velocity, u 

(a) Translational velocity 

1.o ' (b)  . . . . . . . . . . . . . . . . . . .  

~ 0.6 

0.0 - 
-4 -3 -2 -1 0 

microrotational velocity, o~ 

(b) Micro rotational velocity 

Fig.  1 Effects of micropolar parameter /~ on velocity profiles for rt=0, m 0.1, Up :0 .1 ,  R e : 1 0  and 

dp/dx= l 
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physical  reasons for such a behavior ,  the varia- 

t ions of  the skin frict ion and couple  stress co- 

efficients at the upper  plate for R e = 1 0 ,  Up= 

0.1 and d p / d x = l  with different values of  m, n 

and fl are prepared  in Table  1. Numerica l  results 

show that  the re la t ionship  between the material  

constants  to the flow coefficients may need to be 

further  examined,  as well as the parameter  (n) in 

the boundary  condi t ion.  

Fo r  the case o f  the particle density is suffi- 

ciently large close to the wall ( n = 0 ) ,  velocity 

profiles for different values of  the characterist ic  

length ratio (m) are shown  in Fig. 3. It is 

observed that  with increasing value of  m, the 

magni tude  of  t ransla t ional  velocity at the upper  

plate is reduced. In addi t ion,  as given in Table  1, 

the magni tude  of  the mic ro - ro t a t iona l  velocity 

dis t r ibut ion across the channel  decreases as the 

m - p a r a m e t e r  increases. 

Figure 4 illustrates the d is t r ibut ion of  stream- 

Table 1 Variations of the skin friction and couple stress coefficients at the upper plate for R e =  10, Up=O.I and 

dp/dx=l 

m n B 

0.05 0.0 0.0001 

0.01 
0.1 

0.5 

1.0 

5.0 

0.4 

1.0 

0.1 0.0 

0.4 

1.0 

0.0001 

0.01 

0.1 
0.5 

1.0 
5.0 

0.0001 

0.01 

0.1 

0.5 
1.0 

5.0 

0.0001 

0.0l 

0.1 
0.5 

1.0 
5.0 

0.0001 

0.01 
0.1 

0.5 
1.0 
5.0 

0.0001 

0.01 

0.1 
0.5 
1.0 
5.0 

Cs Cw 
1.9999 1.2669 

1.9999 39.30 

1.9990 123.64 
1.9960 202.25 

1.9925 206.69 

1.9527 112.46 

1.2144 --4.6054 
2.0000 --3.2024 

2.0123 0.5153 
2.0561 5.2952 

2.0934 6.7887 
2.1750 4.5651 

0.0361 --0.5279 

1.9773 39.70 

1.8028 136.02 

1.1877 303.57 

0.6533 413.87 

--0.8411 674.98 

1.9998 0.3288 
1.9999 17.17 

1.9994 59.43 

1.9939 98.96 
1.9849 101.28 

1.9040 54.11 

0.2691 --4.5392 

1.9811 --4.0907 
2.0094 --2.1499 

2.0482 0.5280 

2.0801 1.5174 
2.1210 1.0627 

--2.3268 --2.7639 
1.9293 17.34 
1.7963 65.39 

1.1758 148.67 
0.6403 203.08 

--0.8268 326.34 
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m n 

0.5 0.0 

0.4 

1.0 

1.0 0.0 

0.4 

1.0 

Cs C~o 
0.0001 

0.01 

0.1 
0.5 

1.0 

5.0 

0.0001 

0.01 
O. 1 

0.5 
1.O 

5.0 

0.0001 

0.01 

0.1 

0.5 
1.0 

5.0 

0.0001 
0.01 

0.1 

0.5 
1.0 

5.0 

0.0001 
0.01 

0.1 

0.5 

1.0 
5.0 

0.0001 
0.01 
O.l 

0.5 
1.0 
5.0 

1.9989 

1.9936 

1.9929 

1.9673 

1.9190 

1.4794 

--6.9340 

1.1999 

1.8749 
1.9743 

1.9689 
1.6770 

--20.33 

0.0036 

1.4976 

1.0706 

0.5450 

--0.7522 

1.9970 

1.9820 

1.9650 
1.9122 

1.8112 
0.8270 

--15.89 

0.2384 

1.4983 

1.7689 

1.7549 
1.0585 

--42.71 

--2.3672 
0.6738 
0.7768 
0.3579 

--0.7415 

0.0133 

1.2431 

8.1577 
16.32 

16.90 

7.20 

--4.4340 

--4.5836 
--4.2622 
--3.2856 

--2.7043 

--1.7616 

--4.5528 

--0.5384 

8.9238 

24.91 
34.91 

53.13 

0.0033 
0.3190 

2.5221 

6.0581 
6.3312 

1.0991 

--4.4172 

--4.5161 
--4.4141 

--3.7208 
--3.2026 
--2.1089 

--4.7763 
--2.7694 

1.9328 
9.6709 

14.37 
22.37 
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translational velocity, u 

(a) Translational velocity 

0.8 

'$ 0.6 
J=  

C 

0.4 

0.2 

1.0 

0.8 

0.6 

4 0.4 

0.2 

0.0 

- 2 . 0  - 1 . 5  - I  , 0  

-3 -2 -1 0 1 2 
microrotat ional velocity, o) 

(b) Micro-rotational velocity 

Effects of micro gyration parameter n on velocity profiles for / ~ 2 ,  rn=0.1, Up :0 .1 ,  Re=10 and 

dp/dx= 

1.0 

0.8 

Ur 

'3 0.6 

i 0 . 4  

0.2 

0.0 

Fig. 3 

m:t.0 / ~ / /  " ,  
"V / /  m=0.1 
/ / /  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
translational velocity, u 

(a) Translational velocity 
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-2.5 -2.0 -1.5 -1.0 -0.5 0.0 

microrotat ional velocity, ~) 

(b) Micro rotational velocity 

Effects of model parameter m on velocity profiles for n 0, ~ = 2 ,  UP 0.1 Re=10 and d p / d x ~ l  

1.0 

0.8 

"$ 0.6 
. . c  

0.4 

0.2 

0.0 

l ~  
dp/dx=lO 

~//// ~ "  dp/dx=l  

dpldx=O 

1.0 

0.8 

o 1  

0.6 

0.4 
J =  

0.2 

. . . . . . . . . . . . . . . . . . . . . . .  0 .0  

5 10 15 20 25 -25 
translational velocity, u 

(a) Translational velocity 

. . . . . . . . . . . .  , , , t , , , 

dp = 

, . , . . . .  , , . 

-20 -15 -10 -5 
microrotat ional velocity, 

(b) Micro rotational velocity 

Fig. 4 Effects of pressure gradient dp/dx on velocity profiles for n = 0 ,  rn :0 .1 ,  f l=2,  Up=0.1 and Re~10 
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wise and micro- ro ta t iona l  velocities across the 

channel for various values of  the pressure gra- 

dients in the direct ion of  fluid flow, while the 

characterist ic length ratio (m) was set to 0.1. As 

expected, the t ranslat ional  velocity increases near 

the upper plate as the pressure gradient  increases. 

Also,  the magni tude of  mic ro- ro ta t iona l  velocity 

in the channel  is increased as the pressure gradi- 

ent increases. 

The var ia t ion of  skin friction coefficient for 

various values of  the model  parameter  m with 

n = 0 ,  U/)--0.1, R e = 1 0  and d p / d x = l  is shown 

2 . 0  i , , , l , , , , l = , , * l , r  . . . . . . .  

1.8 

0 1.6 

r., 1.4 
0 

'=" 1.2 
r -  

1.0 

0 . 8  

Fig. 5 

. . . .  �9 . , . , . . . . . . . . . .  . �9 , ~.,  

1 2 3 4 

micropolar parameter, 13 

Effects of micropolar parameter/~ on the skin 

friction coefficient at the upper plate for vari- 

ous values of model parameter m with n = 0 ,  

Up=0.1,  Re=10  and d p / d x : l  

250 

o 200 
,,,=- 

~: 150 

lo0 

~. 5o 
0 
o 

Fig. 6 

m--0.1 

m=1.0 

1 2 3 4 5 
micropolar parameter, I~ 

Effects of micropolar parameter ~ on the 

couple stress coefficient at the upper plate for 

various values of model parameter rn with 

~z=0, U p = 0  1, R e : l O  and dp/dx--I 

The authors are grateful for the financial sup- 

port provided by Korea  Research Founda t ion  

Grant  ( K R F  2002-041 D00081). 

in Fig. 5. It is seen that as the f l -parameter  

increases the skin friction coefficient at the upper 

plate decreases. Furthermore,  an increment in 

m-pa rame te r  causes a decrease of  the skin fric- 

tion coefficient at the upper plate. However,  it 

is noted from Table  1 that there is a maximum 

value on the skin friction coefficients for n o n -  

zero values of  the micro-gyra t ion  boundary  con- 

dition coefficient (n) with increment in /3 para- 

meter. This value can be analytically found by 

dCs/  dfl=o. 
Figure 6 shows the effect of  m-pa rame te r  on 

the couple  stress coefficient at the upper plate 

for various values of  the /~-parameter .  It is found 

that the couple  stress coefficient decreases with 

the increase of  the m-paramete r .  It is also noticed 

that for smaller m-va lue ,  the coefficient first 

increases up to / ~ 0 . 7  and decreases thereafter. 

4.  C o n c l u s i o n s  

In this study, a model  based on micropolar  

fluid theory is used to examine the behavior  of  a 

plane Couette  flow between two parallel  plates of  

a viscous, incompressible,  micropolar  fluid. Nu- 

merical results are presented to illustrate the de- 

tails of  the flow characteristics and their depen- 

dence on the material  parameters. The vortex 

viscosity to bulk viscosity ratio /~ was found to 

have much more of  an impact on the flow beha- 

viors. It is also observed that the micro gyra- 

tion boundary condi t ion  coefficient (n) influenc- 

ed on the coefficients of  skin friction and couple 

stress at the upper plate due to its different effect 

on the surface stress. 

For  better understanding of  the above flow 

behaviors,  however,  it may be necessary to per- 

form the experimental  works. In the near future 

we would be glad to compare  these analytical 

results with those obtained by anyone in the same 

field. 

A c k n o w l e d g m e n t  
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